On tame operators between non-archimedean power seris spaces

Loading...
Thumbnail Image

Date

2012

Advisor

Editor

Journal Title

Journal ISSN

Volume Title

Publisher

Title alternative

Abstract

Let p {1∞}. We show that any continuous linear operator T from A1(a) to Ap(b) is tame i.e. there exists a positive integer c such that supx IITxIIk=/IxIck < ∞ for every k N. Next we prove that a similar result holds for operators from A∞(a) to Ap(b) if and only if the set Mba of all finite limit points of the double sequence (bj/ai/I,j N is bounded. Finally we show that the range of every tame operator from A∞(a) to A∞(b) has a Schauder basis.

Description

Sponsor

The National Centre of Science, Poland (grants no. N N201 605340, no. N N201 610040)

Keywords

Citation

Acta Math. Sin. (Engl. Ser.), 28(2012), 869-884.

Seria

ISBN

ISSN

DOI

Title Alternative

Rights Creative Commons

Creative Commons License

Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego