Closed subspaces without Schauder bases in non-archimedean Frechet spaces

Loading...
Thumbnail Image

Date

2001-06

Advisor

Editor

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Netherlands Academy of Arts and Sciences

Title alternative

Abstract

Let E be an infinite-dimensional non-archimedean Frechet space which is not isomorphic to any of the following spaces: $c_0,c_0 x K^N,K^N$. It is proved that E contains a closed subspace without a Schauder basis (even without a strongly finite-dimensional Schauder decomposition). Conversely, it is shown that any closed subspace of $c_0 x K^N$ has a Schauder basis.

Description

Sponsor

Keywords

Citation

Indag. Mathem., (N.S.), 12(2),261-271.

Seria

ISBN

ISSN

DOI

Title Alternative

Rights Creative Commons

Creative Commons License

Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego