Closed subspaces without Schauder bases in non-archimedean Frechet spaces

dc.contributor.authorŚliwa, Wiesław
dc.date.accessioned2011-03-07T11:35:33Z
dc.date.available2011-03-07T11:35:33Z
dc.date.issued2001-06
dc.description.abstractLet E be an infinite-dimensional non-archimedean Frechet space which is not isomorphic to any of the following spaces: $c_0,c_0 x K^N,K^N$. It is proved that E contains a closed subspace without a Schauder basis (even without a strongly finite-dimensional Schauder decomposition). Conversely, it is shown that any closed subspace of $c_0 x K^N$ has a Schauder basis.pl_PL
dc.identifier.citationIndag. Mathem., (N.S.), 12(2),261-271.pl_PL
dc.identifier.urihttp://hdl.handle.net/10593/926
dc.language.isoenpl_PL
dc.publisherRoyal Netherlands Academy of Arts and Sciencespl_PL
dc.titleClosed subspaces without Schauder bases in non-archimedean Frechet spacespl_PL
dc.typeArticlepl_PL

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sliwa 9.pdf
Size:
773.24 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.59 KB
Format:
Item-specific license agreed upon to submission
Description: