Frechet spaces of non-archimedean valued continuous functions

dc.contributor.authorŚliwa, Wiesław
dc.date.accessioned2013-02-03T19:41:16Z
dc.date.available2013-02-03T19:41:16Z
dc.date.issued2012
dc.description.abstractLet $X$ be an ultraregular space and let $K$ be a complete non-archimedean non-trivially valued field. Assume that the locally convex space $E$ = $C_c(X;K)$ of all continuous functions from $X$ to $K$ with the topology of uniform convergence on compact subsets of $X$ is a Frechet space. We shall prove that $E$ has an orthogonal basis consisting of $K$-valued characteristic functions of clopen (i.e. closed and open) subsets of $X$ and that it is isomorphic to the product of a countable family of Banach spaces with an orthonormal basis.pl_PL
dc.description.sponsorshipThe National Center of Science, Poland (grant no. N N201 605340)pl_PL
dc.identifier.citationJ. Math. Anal. Appl., 385(2012), 345-353pl_PL
dc.identifier.urihttp://hdl.handle.net/10593/4298
dc.language.isoenpl_PL
dc.titleFrechet spaces of non-archimedean valued continuous functionspl_PL
dc.typeArticlepl_PL

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sliwa 45.pdf
Size:
304.83 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.49 KB
Format:
Item-specific license agreed upon to submission
Description:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego