Frechet spaces of non-archimedean valued continuous functions

Loading...
Thumbnail Image

Date

2012

Advisor

Editor

Journal Title

Journal ISSN

Volume Title

Publisher

Title alternative

Abstract

Let $X$ be an ultraregular space and let $K$ be a complete non-archimedean non-trivially valued field. Assume that the locally convex space $E$ = $C_c(X;K)$ of all continuous functions from $X$ to $K$ with the topology of uniform convergence on compact subsets of $X$ is a Frechet space. We shall prove that $E$ has an orthogonal basis consisting of $K$-valued characteristic functions of clopen (i.e. closed and open) subsets of $X$ and that it is isomorphic to the product of a countable family of Banach spaces with an orthonormal basis.

Description

Sponsor

The National Center of Science, Poland (grant no. N N201 605340)

Keywords

Citation

J. Math. Anal. Appl., 385(2012), 345-353

Seria

ISBN

ISSN

DOI

Title Alternative

Rights Creative Commons

Creative Commons License

Uniwersytet im. Adama Mickiewicza w Poznaniu
Biblioteka Uniwersytetu im. Adama Mickiewicza w Poznaniu
Ministerstwo Nauki i Szkolnictwa Wyższego